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ON THE PARTIAL DIFFERENTIAL EQUATIONS OF
MATHEMATICAL PHYSICS.

E. T. Whittaker in Cambridge.

§1.
INTRODUCTION
The object of this paper is the solution of Laplace's potential equation
o oV a’V
2 + 2
ox° oy 5‘2
and of the general differential equation of wave-motions
v s 8’V oV g oV
ox’ 6y2 oz o’

and of other equations derived from these.

=0,

In § 2, the general solution of the potential equation is found.

In § 3, a number of results are deduced from this, chiefly relating to particular solutions of the
equation, and expansions of the general solution in terms of them.

In § 4, the general solution of the differential equation of wave-motions is given.

In § 5, a pumber of deductions from this general solution is given, including a theorem to the effect
that any solution of this equation can be compounded from simple uniform plane waves, and an undulatory
explanation of the propagation of gravitation.

§2.
THE GENERAL SOLUTION OF THE POTENTIAL EQUATION.

We shall first consider the equation
62V 62V o
ox’ ﬁy s

which was originally given by Laplace’).

=0,

This equation is satisfied by the potential of any distribution of matter which attracts according to the
Newtonian Law. We shall first obtain a general form for potential-functions, and then shall shew that this

U Mémoire sur la théorie de I'anneau de Saturne, 1787,
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form constitutes the general solution of Laplace's equation, From the identity
1 _L T du
\/{(x-—a)z +(y-bY +(z—c)2} 2n 4 (z—c)+i(x—a)cosu+i(y—b)sinu’

we see that the potential at any point (x, , z) of a particle of mass m, situated at the point (a, b, ¢), is

m ’I du
2n ¢ (z+ixcosu +iysinu)—(c+iacosu +ibsinu)

which, considered as a function of x,y,z, is an expression of the type

2
I f(z+ixcosu+iysinu, u)du,
0
where f denotes some function of the two arguments
z+ixcosu+iysinu and w.
It follows that the potential of any number of particles m,, m,, . . ., m,, situated at the points (3,6,c, ),

fabye,), (ahscs ), . ... (abie, ), is an expression of the type

2n
[{£,(z+ ixcosu+iysinu, u)+ f, (z+ixcosu+iysinu, u)
° +f, (z+ixcosu +iysinu, u)}ydu

or

2%
f f(z+ixcosu+iysinu, u)du,
0

where fis a new function of the two arguments
z+ixcosu+iysinu and u.

In this way we see that the potential of any distribution of matter which attracts according to the
Newtonian Law can be represented by an expression of the type

2n
I f(z+ixcosu+iysinu, u)du.
)

The question now naturally suggests itself, whether the most general solution of Laplace's equation
can be represented by an expression of this type. We shall shew that the answer to this is in the affirmative.

For let V(x, y, z) be any solution (single-valued or many-valued) of the equation
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oV oV oV
b=
' o

Let (x,, y., z,) be some point at which some branch of the function ¥{(x, y, 2) is regular. Then if we write

0.

x=x,+ X, y=y+Y, z=2z,+27

it follows that for all points situated within a finite domain surrounding the point (x,, y,, z.), this branch of
the function M(x, y, z) can be expanded in an absolutely and uniformly convergent series of the form

V=a,+aX+bY +cZ+a,X* +b,Y* +¢,Z* +d,YZ
+e,ZX + fLXY +a, X + ...

Substituting this expansion in Laplace's equation, which can be written
oV W oW
Tttt =0
ox oy oz

and equating to zero the coefficients of the various powers of X, ¥, and Z, we may obtain an infinite number
of linear relations, namely

a,+b,+¢c, =0, etc.
between the constants in the expansion.

There are +n(n —1) of these relations between the (1 + l?(n + 2) coefficients of the terms of any
degree n in the expansion of V: so that only {—i—(n +1)(n +2) — 2 n(n ~1); or (2n+1) of the coefficients
of terms of degree # in the expansion of V are really independent. It follows that the terms of degree # in V
must be a linear combination of (27 +1) linearly independent particular, solutions of Laplace's equation,
which are of degree nin X, ¥, Z.

To find these solutions, consider the expansion of the quantity

(Z +iX cosu +iY sinu)’
as a sum of sines and cosines of multiples of «, in the form
(Z +iX cosu +i¥ sinu)" = g,(X,Y,Z) + g (X,¥,Z)cosu
+8,(X,Y,Z)cos2u +...+g,(X,Y,Z)cos nu
+h (X,Y,Z)sinu +h, (X,Y,Z)sin2u +...
+h,(X,Y,Z)sinnu.
Now g.(X, Y, Z) and h,(X, ¥, Z) are together characterised by the fact that the highest power of Z

contained i them is Z" "™, moreover g,(X, ¥, Z) is an even function of ¥, whereas 4, (X, ¥, Z) is an odd
function of ¥; and hence the (21 +1) quantities

8 (X.Y.2),8(X.Y,2),...h,(X,Y,Z)
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are linearly independent of each other; and they are clearly homogeneous polynomials of degree » in X, ¥,
Z, and each of them satisfies Laplace's equation, since the quantity (Z + iX cos u + i¥ sin u)" does so. They
may, therefore be taken as the (2» +1) linearly independent solutions of degree # of Laplace's equation.

Now since by Fourier's Theorem we have the relations

2
gm(X,Y,Z)=-!—I(Z+chosu+iYsinu)" cosmu du,
n 0

25
h (X,Y,Z)=—1-j (Z +iX cosu +iY sinu)" cosmu du,

it follows that each of these (2n +1) solutions can be expressed in the form

2n
If(Z +iX cosu +iY sinu, u)du
4]

and therefore any linear combination of these (2n +1) solutions can be expressed in this form. That is, the
terms of any degree # in the expansion of ¥ can be expressed in this form; and therefore V itself can be
expressed in the form

n
IF(Z +iX cosu +iY sinu, u) du,
0

or

2
j' F(z+ixcosu +iysinu — z, — ix, cosu — iy, siny, u)du,
0

or

o3
If(z+ixcosu+iysinu, u) du,
0

since the z, + ix, cos # + iy sin u can be absorbed into the second argument x.

Now V was taken to be any solution of Laplace's equation, with no restriction beyond the assumption
that some branch of it was at some point a regular function -- an assumption which is always tacitly made in
the solution of differential equations; and thus we have the result, that the general solution of Lapiace’s
equation

oV oW oW
rt Tt =0
" oy oz
is
2n
V= J.f(z +ixcosu +iysinu, u) du,
0
where fis an arbitrary function of the two arguments

z+ixcosu+iysinu and u.
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Moreover, it is clear from the proof that no generality is lost by supposing that f'is a periodic function of .

This Theorem is the three-dimensional analogue of the theorem that the general solution of the
equation
v &V

ax2+ay2 =O

is

V=r(x+iy)+g(x-1iy).

§ 3.

DEDUCTIONS FROM THE THEOREM OF § 2; PARTICULAR SOLUTIONS;
EXPANSIONS OF THE GENERAL SOLUTION.

19, Interpretation of the solution. We may give to the general solution just obtained a concrete
interpretation, as follows.

Since a definite integral can be regarded as the limit of a sum, we can regard ¥ as the sum of an infinite
number of terms, each of the type

V, = f,(z+ixcosu, +iysinu,)

each term corresponding to some value of #,,
But this term is a solution of the equation
2 2
oV, oV, _ 0

+—5=0,

ox? oz’

where
X, =xcosu, + ysinu,,
Y =-—xsinu, + ycosu,,
Z, =z,

so that (X,, Y., Z) represent coordinates derived from (x, y, z) by a rotation of the axes through and angle u,
round the axis of z.

Thus we see that the general solution of Laplace s equation can be regarded as the sum of an infinite
number of elementary constituents V,, each constituent being the solution of an equation

oW, &V,
7+ F3 =0,
x> oz

and the axes (X,, ¥,, Z,) being derived from the axes (x,y,z) by a simple rotation round the axis of z.

2°. The particular solutions in terms of Legendre functions. 1t is interesting to see how the well-known
particular solutions of Laplace's equation in terms of Legendre functions can be obtained as a case of the
solution given in § 2.

The particular solutions in question are of the form
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r"P" (cos® )cosme and r"P"(cos® )sinme
(n=0,1,2,..,0; m=0,1,2,..,n),

where (7, 6, @) are the polar coordinates corresponding to the rectangular coordinates (x, y, z), and where
(_1)m Sian dn+m (Sinbz 0 )

2"n! d(cosB)"" '
Now the function P," (cose ) can be expressed by the integral

+ +m-1)..(n+1 m % "

(ntm)(n+m=1)..(n )(~1)'; I (cos® +isind cosy )" cosmydy

4

P (cos0) =

P (cos® )= -

and thus we have
(n+m)(n+m-1)..(n+1)

¢ n
-1}z
. (-1)

r"P)" (cosB ) cosmep =

27 n
J (z +i (x2 + yz) cosxu) cO8 7/ COS e dhy
¢

=(n+m)(n+m‘1)...(n+1) n

o (—I)% _O[(z+i«/x’+y2 cosw)" cosm(y —¢ )dy

_ (n+m)(n+m-1)...(n+1) (_1)%1_

2r
j (z+ixcosu +iysinu)' cosmu du.
2n °

We see therefore that the solution r"P," (cosB )cos mQ is a numerical mulitiple of
2n

j (z+ixcosu +iysinu)’ cosmu du.
0

Similarly the solution " P," (c0s8 )sin me is a numerical multiple of
-

j (z+ixcosu +iysinu)’ sinmu du.
1}

From this it is clear that in order to express any solution

2n
I f(z+ixcosu+iysinu, u)du
0

of Laplace's equation, as a series of. harmonic terms of the form

*"P)" (cos@ )cosme and r"P,"(cos )sinmo,
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it is only necessary to expand the function f as a Taylor series with respect to the first argument z +ix cos u
+ iy sin u, and as a Fourier series with respect to the second argument »,

As an example of this procedure, we shall suppose it required to find the potential of a prolate spheroid
in the form

2
If(z+txcosu+1ysinu, u)du,
]

and to expand this potential as a series of harmonies. Let

PN L
7 t—5=0
a c

be the equation of the surface of the spheroid; and suppose that if is a homogeneous attracting body of mass
M. To find its potential, we can make use of the theorem that the potential at external points is the same as

3M(c2 ~a? —zz)

that of a rod joining the foci, of line-density ;that is, it is

4(6‘2—a2)%
____31/-’__3_74,“ (cz—'a’—cz).de:'
8n (02—a2)5 0 _J;?:;Z”'C +ixcosu +iysinu

or

M F B++c?-a?

5 j (c2 -a —-Bz)log
3 B-+c*-a?
8 (c—a)2 o
where B is written for z + ix cos u + iy sin u,
Expanding the integrand in ascending powers of —, we have the potential in the form
2
M| 1 E-at (¢2-a)
+
2n ¢ {13.B 358 575

+24c* -a* B} du,

+...rdu.

Since

_sz’-' du _ P, (cosB)
o d Bn+l rml ?

this gives the required expansion of the potential of the spheroid in Legendre functions, namely the series

1 +(C2 —a’)Pz(cose)+(c’-az)zﬂ(cose)_!_m |

M 3 :
1.37 35r 57.r

This result may be extended to the case of the potential, of an ellipsoid with three unequal axes, by using a
formula for the potential of an ellipsoid given by Laguerre')

' C.R, 1878.
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3%, The particular solutions of Laplace’s equation which involve Bessel functions. We shall next shew
how the well-known particular solutions of Laplace's equation in terms of Bessel, functions can be obtained
as a case of the general solution. The particular solutions in question are of the form

e J, (ko)cosme and €”J, (ko)sinme,

where k and m are constants, and z, @, @ are the cylindrical co-ordinates corresponding to the rectangular
co-ordinates x, ¥, z, so that

X = 0COsQ, y = psing.
Now if the solution
e”J, (ko)cosme
we replace J (k) by its value
J, (ko) = —l—jcos(me ~kosin®)do,
T

0
we find after a few simple transformations that

(-1

2r

Ik

cosmiu du.

2n
ek?Jm (kg) cosmp = Iek(zwxcosuﬂy.inu)
0

The other solutions which involve sin ¢ can be similarly expressed:
we see therefore that the solutions

e“J, (ko)cosmp and €“J, (ko)sinme
are numerical multiples of

n

K zsi .
J'e (z+ixeosu+iysinu) cos mu du
0

and

]

k ipsi :
J'e (z+1xcosu+iysinu) sin mu du

0
respectively. It follows from this that in order to express any solution

2n
I f(z+ixcosu+iysinu, u)du
1]

of Laplace's equation as a sum of terms af the form

e¥J. (kg)cos me and ®J, (lrg)sin me,
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it is only necessary to expand the function fin terms of the exponentials of its first argument z + ix cos u +
iy sin u, and as a Fourier series with respect to. its second argument u.

As an example of the use which may be made of these results, we shall suppose it required to express
the potential-function

V=1+e?J,(0)+e™J,(20)+e7"J,(30)+...
{where z is supposed positive) as a series of harmonic terms of the type involving Legendre functions: and

also to find a distribution of attracting matter of which this in the potential, This can be done in the following
way. We have

V=1+e7J,(0)+e™J,(20) +e?"J,(30) +...

21

=_§1___ {1+e—z-ixoosu—iysinu +e—2(z+lxoosu+iysinu) +}du
T 2
1% du

on 1— e-—(z+ixeosu+iysinu) *
0

But if ¢ be any variable differcnt from zero, and such that | # | < 21 we have

3 5
L 1l ptipt gty .
1—e 12 g

where B,, R,, are Bernoulli's numhers. Therefore, so long as z is positive and |z + ix cos u + iy sin | < 270 te.,
so long as z is positive and x* + )* +2° < 47* we have

1% 1 1 B, .. .
= e . ———+—+=(z +ixcosu +iysinu)+... rdu
2n 3 (z+ixcosu+iysinu 2 2!
or
1 1 B B, , B,
V=;+E—2—;rP,(cose)——f!—rPz(cose)+753!—rP_.;(cose)+...

and this is the required expansion of V as a series of harmonics involving Legendre functions.
Next, since

1 1 1 & 1 1
e e e e parut
1-e 2 z Sz+2nin z-2nin

we have
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1
1 %1 1 2 | z+ixcosu +iysinu +2nin
V=———I -+ - —— +Z Y au,
2n 4|2 z+ixcosu+iysinu o + 1
z+ixcosu +iysinu — 2nin
or
1 1 - 1 1
V==+

s m—— + \
2 xXP+yt+7? ; \/x2+y2+(z+2nin)2 \/.7c2+y2+(z—2ni7:)2

and therefore V can be regarded as the potential due to a set of attracting masses placed at equal imaginary
intervals 2i 7t along the axis of z.

§ 4.

2 2 2 2
THE DIFFERENTIAL EQUATION 2 Z +8 Z +2 Ij =528 I:
ax” oy dz ot

We shall next consider the general differential equation of wave-motions,
oV oW oV oV
Ttttk : 70
EYE o1

where k is a constant,
Writing k¢ for ¢, this become

oV &V Y _FV
ot @t et ot
which we shall take for the present as the standard form of the equation.
In order to find the general solution of this equation, we follow a procedure analogous to that of § 2.
Let Vx, y, z, 1) be any solution (single-valued or many-valued) of the equation; and let (x,, y,, 2., ¢,) be a

place at which some branch of the function V'is regular. Then if we write x =x, + X,y =y, + ¥, z=z,+ Z,
t=t,+ T, it will be possible to expand this branch of the function V as a power-series of the form

V=a,+aX+bY +cZ+dT +a,X> +b,Y* +¢,Z* +d,T* +e, XY
+f,XZ + g, XT + BYZ + YT +L,ZT +a, X> + ..

which will be absolutely and uniformly convergent for a certain finite domain of values of X, ¥, Z, T.
Substituting this expansion in the differential equation, which may be written

v oWV oW oV
Tt et T
oxX*: or* oz® or

and equating to zero the coefficients of various powers of X, Y and Z, we obtain an infinite number of linear




28

Journal of New Energy Vol. 4, no 3

relations, namely
a,+b,+c,=d,, etc,

between the constants in the expansion. There are %(n - 1)n Sjn + 1) of these relations between the
%( n+ 1)(71 + 2)(n + 3) coefficients of terms of any degree » in the expansion of V; so that only

1
—6—{(n+ 1)(n+2)(n+3)~(n-1)n(n+ 1)}
or
(n+ 1)2
of the coefficients of terms of degree # in the expansion of V are really independent. It follows that the terms
of degree n in ¥ must be a linear combination of (n + 1)* linearly, independent particular solutions of degree

ninX Y, Z T.
To find these solutions, consider the expansion of the quantity

(X sinucosv +Y sinusinv + Z cosu +T)".
If we first take the expansion in the form
g, +8,cosv+g,cos2v+...+ g, cosny

+h sinv +h, sin 2v +...+ h, sinny,

we have seen in § 2 that g, 8, ..., 8., /1, ..., Ay, are linearly independent functions of X, ¥, Z, and 7. Moreover,
g, and h, are of the form sin™ uXa polynomial of degree (n - m) in cos u, and therefore each of them
contains (# - m + 1) independent polynomials in X, ¥, Z, T. Thus the total number of independent polynomials
inX, Y, Z, T, in the expansion of

(X sinucosv+Y sinusinv+Zcosu+T)
in sines and cosines of multiples of # and v, is
(n+1)+2n+2(n-1)+2(n-2)+..+2
or
(n+1)".
Now each of these polynomials must satisfy the equation
YV 8 W aW
o F e ot

since the quantity

(X sinucosv+Y sinusinv+Zcosu+T)"

does so: and therefore they may be taken as the (# +1)? linearly independent solutions of the equation
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vV VvV oV oV
2 + 2 + 2 = 2
o oy oz ot

which are homogeneous of degree n in X, Y, Z, T. Now by Fourier's theorem we have

1 _—
£, =——f(Xsmucosv+Ys1nusmv+Zcosu+T)" cosmy dv,
n 0

and since g, is of the form

n-m

> u, sin™ ucos’ u,

r=0
where u, is one of the polynomials in question, it is clear that g, can be expressed as a sum of sines or cosines
of multiples of u, according as m is even or odd; and the coefficient of one of these sines or cosines, say of

CUs 3u, 1S

El j 8,, cossu du.
T

0
It follows that each of the polynomials #, can be expressed in the form

[ g,/ @y,

where f{) denotes some periodic function of «; that is, it can be expressed in the form
PR

j'I(Xsinucosv+Ysinusinv+Zcosu+T)" f(u)cosmv du abv.
00

1t follows from this that each of the (# + 1)* polynomial solution of degree » can be expressed in the form

nn
II(Xsinucosv+Ysinusinv+Zcosu +T)" f(u,v)du dv,
00

where f(u, v) denotes some periodic function of ¥ and v; and therefore the terms of degree # in ¥ can be
expressed in this form.
The function ¥ itself can therefore be expressed in the form

2 n

J' Jf(Xsinu cosv+Ysinusinv+Zcosu +7T,u,v)du dv,
00 .
where f denotes some function of the three arguments
Xsmucosv+Ysinusinv+Zcosu+7T,u, and v,
and f'may without loss of generality be supposed to be periodic in % and v.

Now
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Xsinucosv+Ysinusinv+Zcosu+7T
=(xsinycosv+ ysinusinv+zcosu +1)

~(x, sinucosv+ y, sinusinv+z, cosu +1,);

and the term

(xu Sinu cosvV+ Y, sinusiny + z, cosu + to)

can be absorbed into the arguments # and v; moreover V was taken to be any solution of the partial differential
.t
equation; we have, therefore, on writing -k— for ¢, the result that the general solution of the partial differential

equation of wave-motions,

2 2 2 2
&x® oy oz ot

is
2n t
V= IJ.f(xsinucoswrysinusinv+zcosu +»k’—,u, v)du av,
00

where fis an arbitrary function of the three arguments

. . . t
Xsmnucosv+ ysmusiny -+ zcosu -I-—k—, u,v.

§5.
DEDUCTIONS FROM THE GENERAL SOLUTION OF § 4.

1°. The analysis of wave-motions. We shall now deduce from the general solution thus obtained a
result relating the analysis of those phenomena which are represented by solution of the equation
v o oV oW
st ot == k 2
ox®  oy° Oz ot
If we revert to the fundamental idea of the definite integral as the limit of a sum of an infinite number of
terms, we see that the general solution

N
. . . {
V= _[ jf(xsmu cosv+ ysinusiny +zcosu +—, u, v)du av
00 k
can be interpreted as meaning that ¥is the sum of an infinite mimber of terms of the type
. . . !
S| xsinucosv+ ysinusinv+zcosu +-,:, u, v,

there being one of these terms corresponding to every direction in space given by the direction-cosines
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Sin#cosv, sinusinv, cosu.

The solution ¥ can therefore be regarded as the sum of constituent solutions, each of the type

. L t
F(x31nucosv+ysmusmv+zcosu+7c-)

where the fimction F varies from one direction (», v) to another.
Now let us fix our attention on one of these constituent solutions F. If for some range of values of the
quantity

. . . !
Xsimucosv+ ysmusiny+zcosu +;,

the function F is finite and continuous, we can for this range of values express F'by Fourier's integral formula
in the form

© b
-I—Ith'F(a)cos{?»(xsinucosv + ysinusinv +zcosu +£—)—M}dh do.,
Ty % ,

where a and b are the terminals of this range of values; or supposing the integration with respect to ¢ to be
performed,

sin IC

jg(h)”‘ {k[xsinucosv+ ysinusinv+zcosu + —{-)}dk,
0

where g(4) denotes some function of A.
Now let us again revert to the idea of the definite integral as the limit of a sum. Then this latter integral
can be regarded as the sum of an infinite number of terms of the type

cos
gin

. . . 1t
{?\.(xsmucosv+ysmusmv+zcosu +76-)},

each term being multiplied by some factor depending on A.

The solution ¥ can therefore be regarded as constituted by the superposition of terms of this last type.
But a term of this type represents a simple uniform plane wave; for on transforming the axes so that the new
axis of x is the line whose direction-cosines are

SUUCOSV, sinusinv, cos U,

in (x +—t—),
k

which represents a simple plane wave, whose direction of propagation is the new axis of x. We see therefore
that the general finite solution of the differential equation of, wave-motions,
oV o 8V oW
Tt =k —
ox° oy° oz ot

the term becomes
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can be analysed into simple plane waves, represented by terms of the type

sin

. . . t
F\u,v)o, {l(xsmucosv+ysmus1nv+ zcosu +—I;)}

It is interesting to observe that Dr. Johnstone Stoney in 1897') shewed by physical reasoning, and without
any reference to the equation

oV oV oV _,, 0V
+ =k

+
»: oy o5 o

that all the disturbance of the luminiferous ether arising from sources of certain kinds can be resolved into
trains of plane waves.

2°. Solution of the equation
o’V oW + o

P + P +V =0.

If a solution W of the equation

W W W oW
+ + =
ot oyt 8t o

be of the form Ve, where V is a function of x, y, z only, which does not involve ¢, then ¥ clearly satisfies the
equation

oV oV oV
—t+—+—+V =0,
ox oy oz
and therefore, on reference to the general solution of the warve-motion equation found in § 4, we see that the
general solution of the equation

oV oV o
b—t

+V =0
' ot o7t

is
27

V= j }ei(xsinucoswysinusinwzwsv)f(u’v) du dv.
00

3°. Deduction of the lmown particular solutions of the equation
o W oW
2 + 2 + 2
ox oy oz
It is know that the particular solution of the equation

+V =0.

! Philosoph. Magazine, (V) XLIII
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oV 8V

PERPY +az2 +V =0

exist, which are of the form
71‘ Qo8
V=r2] (r)B"(cos8) " mp
nt—~ n
2

(r=0,1,2,..; m=0,12,.n),

where (r, 0, ¢) are the polar coordinates corresponding to x, y, z. We shall now shew, how these may be
derived from the general solution of the equation which has just been found.

For let the general, solution be written in the form

M on

= I "'el(xsinucosv+yainuninv+zcusv) £, v)du o,
00

where fu, v) is an arbitrary function of the two argumems u and v, which may without loss of generality be
taken to be periodic in » and v.
Now let the fimction f{u, v) be expanded in surface-harmonics of  and v, so that
o 2&T.

V= Z I j el'(xninucol v+ ysinusin v+ ZCUGV)Y’, (u, V) sinu du dv

n=0 9 o
where Y, is a surface-harmonic of order n, i.e., if
E =psinucosv, M = psinusiny, £ =ocosu,

are regarded as the co-ordinates of a point in space, then p"Y, (u,V) is a homogeneous polynomial of degree
nin & n. (. satisfying Laplace's equation

o oW &V
+ —

2 7+ 2’0‘
& o &

Next, let the variables be changed by the substitution

cosu = ¢os cosw +sinb sinm cosV',
sinu sin ((p - v) = sinw siny/,
sinu cos ((p - v) = cos® sinb —sinw cosv'cosH,

so that (@ sin wcos v', g sin @ sin V', @ cos @) are the co-ordinates of the point (£, 1, ¢) referred to new
axes, the line whose direction-cosines are (sin & cos @, sin @sin ¢, cos ) being taken as the new axis of
z.

Thus
n

!

V=>||e Y, (u,v)sine do av'

n=0

© Qo
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But a surface-harmonic of any order » remains a surface-harmonic of order »# under any transformation of
axes in which the origin is unchanged, and therefore ¥,(u, v) is a surface harmonic of order » in wand v’; and
consequently it can be expanded in the form

4,(6,0)P,(cosw)+4,(6,0)P, (cosm )cosv' + 42 (0,¢) P} (cosw Jcos 2v'
+..+ 4, (8,0) P, (cosw )cosnv’
+B,(0,0)F, (cos@)sinv' +...+ B (8,9) P (cos® ) sin nv/,

where 4, (9 @) B (6 ,(p) are functions of @ and . Substituting this value for ¥, («, v) in the integral,
and performing the integration with respect to v', we have

V= iA” ® (p)J e"*** P, (coso )sinode;

n=0 0
and in virtue of the relation?)

ity ()

nt=
2

—

"
Ie”“”“”P,, (coso)sinodm = (%jz

0

this can be written in the form

o 1
V= Zr 2‘],,+l(r)f" (6,¢)
n=0 2
where £,(6, ¢) denotes some function of &and .

Since the surface-harmonies ¥,(6, ¢) were independent of each other, the functions £,(6, ¢), will be
independent of each other and therefore each of the quantities

1
ri A, 6.9)
2
will be a solution of the equation
oV WV &V
axz + @,2 + 522
But on transforming this equation to polar co-ordinates, and substituting the

+V =0.

2 (101, 0.0)

for ¥, we find that the function £( 8, ) must satisfy the differential equation for a surface-harmonic in & and
@ of order n. 1t follows that f;( 6, ¢) can be expanded in the form

2 A proof of this and several related results will be found in a paper shortly to be published by the
author.
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£, (0,0)=4,P,(cos0) + 4, cospF, (cos® ) +...+ 4, cosmp B} (cos®)
+B! sin@P? (cos® ) +...+ B) sinnp P, (cosh ),
and thus the particular solutions

A
r2J (PP (cosB), mo
nts

are obtained.
Moreover, it is clear from the above proof that in order to expand any solution

2n n
V= j‘ J'el(xsmucosv+ysmuumv+zcosu)f(u’v)Sinu du dv
00
of the equation
2 2 2
aZ+aZ+af+V=Q
r o oz
as series of the form

o 1
Zr 2‘] l(r)Yn (e3q)))
=0 n+5
where Y, is a surface-harmonic of order n in @and @, it is only necessary to expand the function fu, v)in

surface-harmonics of u and v.
4°, Expression of the solution of the equation

v oV oV
stttV = 0
ox° oy oz
as a series of generalised Bessel functions.
Another analysis of the solutions of the equation
2 2 2
6V+6V aV+V=Q

+
ot gt ozt

entirely different from that given in 3% can be found in the following way.
Consider the expression

if this expression be regarded as a function of s and #, it can for finite non-zero values of s and ¢ be expanded
as a series of (positive and negative) integral powers of s and ¢, the coefficients in this series being functions
of x, y and 2. Let the coefficient of the term in s™t* be denoted by .J,, .(x, v, 2): so that we have, the relation

e%,{‘,_%)(H;)_%y(s%)(";l}*%”(“%) = i i Jm n (x’ y’z)smt"'

M=-00 f=~00
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This equation can be regarded as a generalisation of the equation

10,1
=x| t—- x
ez [ t] = Z ‘jn (Z)Ia,
Nn=~—~0
which defines the ordinary Bessel functions; and we shall consequently call the functions J, (x, ¥, 2)
generalised Bessel functions.
We now proceed to establish some properties of the functions J,, .(x, ¥, 2); it will be seen that they are

very similar to those of the ordinary Bessel functions.
In the first place, since the expression

satisfies the equation

v oV o
P + 3y2 + P +V =0,
it follows that euch of the functions J (x, y, z) satisfies the equation
o'v o oW
st t—st V=0.
ox° oy oz

In the second place, we shall obtain an expression for J,, ,(x, y, z) as a definite integral. By Laurent's theorem,
we know that the coefficient of s™ in the expansion of

is

2rig,

where C is any simple contour in the s-plane surrounding the origin; and again applying Laurent's theorem,
the coefficient of #” in this expression is seen to be

L femme e,
T b
where D is any simple contour in the s-plane surrounding the origin.

Now write s = €™, t = ¢“. Thus we have the result

2n 2n
1 i mios isi Lo
Jm,,, (x,y, Z) - J je miu—~niv+ smucosv+iysmusmv+rzcosudu dV,
4 30

which may, be regarded as the analogue of Bessel's integral
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J,(2)= Icos(nu zsinu)du.

The fimctions J,, (x, y, z) likewise possess an addition theorem: for we have

ez(.ﬂ a)(.w;IH;}—;(_w b)(s—;Ir—-t-)+—2-(z+c)(s+;)
AP ) A
g;:fmg coefficients on both sides of this equation, we have the result

Jpa(x+a,y+bz+c)= i i J oo (%:3:2) 0,y 0g(aubc),

p=—0 ==

which is the addition-theorem for generalised Bessel functions, and is the analogue of the well-known result

T (z+e)=3 T (2)J,,(c).

p=—®

We shall now shew how the generalised Bessel functions furnish an analysis of the general solution of the
equation
vV vV AV
+—5t—5tV =0
ox~ oy oz

For the general solution is, by 2°,

2z 7
Vo= j'j'ef(xsinucosv+ysinuainv+zcosu)f-(u’v)sinudu dv,
00

where f{u, v) can without loss of generality be taken to be a periodic function of # and v,
Now let the function f{u, v) be expanded by the extended form of Fourier's theorem, in the form

Y

f(u,v)= :V: Z am'ne.‘muﬂnv-

M=-00 B=~c0

Then we have

V= Z Z J'J 1{xsinu cos v+ ysinusin v+ zcosu+mu+nv) du dv.

m=-—c0 f#=—

Z.Jm,,,(x+a,y+b,z+c s g =Z o x,y,z)s t" XZ m,"(a’b,c)smtn.
m,n mn m,n
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Comparing this with the form just found for the generalised Bessel functions, we see that the general solution
of the equation

v v oV
2 + 2 + 2
o 8y oz

+V =0
can be written
o0 a0
V=72 3 a,Jn..(x.52),
mM==00 j}==00
where the quantities a,,, are arbitrary constants. This furnishes an alternative analysis of the solution to that
given in 2°,

5°, Gravitation and Electrostatic Attraction explained as modes of Wave disturbance.
The result of 1°, namely that any solution of the equation

2 2 2 2
> 9y oz ot

can be analysed into simple plane waves, throws a new light on the nature of those forces, such as gravitation
and electrostatic attraction, which vary as the mverse square of the distance. For if a system of forces of this
character be considered, their potential (or their component in any given direction) satisfies the equation

o oW oW _

bt =0,
oty &t
and therefore & fortiori it satisfies the equation
o 2% o 8V
+ =k

+
o VY o or*

where k is any constant, It follows from 1° that this potential (or forcecomponent) can be analysed into simple
plane waves in various directions, each wave being propagated with constant velocity. These waves interfere
with each other in such a way that, when the action has once been set up, the disturbance at any point does
not vary with the time, and depends only on the coordinates (x, y, z) of the point.

It is not difficult to construct, synthetically, systems of coexistent simple waves, having the property
that the total disturbance at any point (due to the sum of all the waves) varies from point to point, but does
not vary with the time. A simple example of such a system in the following,

Suppose that a particle is emitting spherical waves, such that the disturbance at a distance » from the

. . . 2n 2n
origin, at time #, due to those waves whose wave-length lies between — and ————— is represented by
B pt+ap

2dp sin(pye—pr)
U r

where V is the velocity of propagation of the waves. Then after the waves have reached the point 7, so that
(¥t - ) is positive, the total disturbance at the point (due to the sum of all the waves) is
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]‘i 2dp sin(uVt —pur)
5 TU r

Take uVt - (4, =y, where y is a new variable, Then this disturbance is
27y,

nre Y

or, since

Sty 8

siny , T
y Y7

it is

1

4
The total disturbance at any point, due to this system of waves, is therefore independent of the time, and is
everywhere proportional. to the gravitational potential due to the particle at the point.

It is clear, from the foregoing that the field of force duo to a gravitating body can be analysed, by a
“spectrum analysis” as it were, into an infinite number of constituent fields; and although the whole field of
force does not vary with the time, yet each of the constituent fields, is of an undulatory character, consisting
of a simple wave-disturbance propagated with uniform velocity. This analysis of the field into constituent

1
fields can most easily be accomplished by analysing the potential — of each attracting particle into terms of
¥
the type
sin(uVt — pur)

#

as in the example already given. To each of these terms will correspond one of the constituent fields. In each
of these constituent fields the potential will be constant along each wave-front, and consequently the
gravitational force in each constituent field will be perpendicular to the wave-front, i.e. the waves will be
longitudinal,

But these results assimilate the propagation of gravity to that of light: for the undulatory phenomena
Just described, in which the varying vector is a gravitational force perpendicular to the wave-front, may be
compared with the undulatory phenomena made familiar by the electromagnetic theory of light, in which the
varying vectors consist of electric and magnetic forces parallel to the wave-front. The waves are in other
respects exactly similar, and it seems probable that an identical propetty of the medium ensures their
transmission through space.

This undulatory theory of gravity would require that gravity should be propagated with a finite
velocity, which however need not be the same as that of light, and may be enormously greater.

Of course this investigation does not explain the cause of gravity; all that is done is to show that in
order to account for the propagation across space of forces which vary, as the inverse square of the distance,
we have only to suppose that the medium is capable of transmitting, with a definite though large velocity,
simple periodic undulatory disturbances, similar to those whose propagation by the medium constitutes,
according to the electromagnetic theory, the transmission of light.




